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Abstract. A limiting law theory for the interpretation of light scattering photon correlation 
measurements in a dispersion of charged spherical particles is developed through the use of 
a cluster expansion technique. The methods used allow us to include the effects of the 
counter-ions in a more fundamental way than has been previously done; we find that these 
do not contribute in any significant way to the limiting law results. For values of the 
scattering vector usually considered we also find that only autocorrelation effects are 
important. 

1. Introduction 

The technique of photon correlation spectroscopy (PCS) has recently been applied to 
dispersions of charged spherical polystyrene particles (Brown et a1 1975). An approxi- 
mate theory for this experiment, in which the interactions between the particles are 
implicitly treated, has been developed by Pusey (1975). In order to extend these results 
to include interactions in a more basic way we must contend with a formidable problem; 
even if the fluid medium is treated as a structureless mediator we must still deal with two 
distinct types of particle-particle forces, due to charge and hydrodynamic interactions, 
and both of these forces are long ranged. For the case of uncharged particles a formal 
theory has been developed (Deutch and Oppenheim 19 7 l ) ,  but even in this simpler case 
utilization of these results requires considerable approximations (Altenberger and 
Deutch 1973) and the results obtained are only described as ‘primitive’. Further, in its 
present form this theory does not appear to be applicable to charged systems without 
the use of additional, uncontrollable assumptions (Badiali and Rosinberg 1973, Rosin- 
berg 1973). There does however exist a proven theoretical framework in which both 
hydrodynamic and charge interactions can be treated. This is the cluster expansion 
theory developed by Friedman (1964a) who used this theory together with a Brownon 
model (Friedman 1964b) to obtain a statistical mechanical theory for the lowest-order 
concentration-dependent correction to the ohmic conductance in an ionic solution. This 
correction, which is not simply proportional to the ion concentration, is referred to as 
the limiting law for the conductivity; limiting laws exist for both thermodynamic and 
transport properties. 

In this paper we will adopt Friedman’s formalism and model to develop the limiting 
law theory for an idealized PCS experiment (see below). A distinct advantage of using 
these methods is that counter-ion effects are routinely included in the results which we 
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obtain and their contribution can be thus readily assessed. In particular, we will be 
interested in extending the result of Pusey (1975) which generalizes the infinite-dilution 
limit. We will simplify matters at the outset by considering a somewhat idealized system 
so as to be able to focus our attention on determining the dominant contributions to the 
limiting law theory. Thus, the actual experimental system has three components, the 
fluid medium (solvent hereafter), charged spherical particles (particles), and counter- 
ions (ions), and we will idealize by assuming: 

(i) The particles are mono-disperse and the charge on each is ze with IzI >> 1. 
(ii) This charge is constant in time. 

(iii) The bare potential between all particles and ions is Coulombic; the ions and 
particles are point charges. 

The first two assumptions require little comment. The first serves to eliminate tedious 
book-keeping and algebra and allows the more interesting facets of the problem to 
emerge, while the second is already implicit in most treatments of this problem (Stephen 
197 1, Phillies 1974) and is included here only because we feel that the theory of particle 
charge fluctuations is an interesting problem in its own right which deserves future 
study. We would not expect these fluctuations to contribute any significant effect to our 
present results, however. 

The third assumption relates to our basic description of the system in which the ions 
are treated on an equal footing with the particles. Previous attempts to include the ions 
have either neglected particle-particle interactions (Ermak and Yeh 1974) or included 
the latter (more precisely the Coulombic part of this interaction) while treating the ions 
as a shielding background (Phillies 1974). We believe that the formalism adopted here 
allows a more fundamental and complete description to be obtained. Since the field 
produced by a uniformly charged particle is the same outside that particle as a point 
charge located at the particle centre, and since the ions and the particles are excluded by 
a hard core from the ion and particle interiors, we feel that this assumption is quite 
justified. It is not necessary for the limiting law theory to include these hard-core 
potentials (Phillies 1974) since they only contribute in higher order (in the particle 
concentration). 

In what follows we will be guided in assessing the relative importance of particular 
terms in the results we obtain by the conditions which are found in the experiment of 
Brown et al(l975).  We begin our theoretical development in § 2 by briefly outlining the 
salient features of Friedman’s (1964a,b) results and showing how they apply in the 
present situation. In § 3 we obtain an explicit expression (equation (4)) for the limiting 
law correction to the infinite-dilution theory. A discussion of our results follows in 0 4. 

2. Cluster expansion for Brownons applied to PCS studies 

The system of interest is composed of a dilute dispersion of particles and ions; the 
former each carry a charge of magnitude q = (z le  with IzI >> 1 and the latter a charge 
4 = e. Overall charge neutrality holds so that cq = E q ,  where c and C are the concentra- 
tions of the particles and ions, respectively, and therefore c << E << 1, this last inequality 
being an experimental condition. The notation used above will be followed throughout, 
a ‘naked’ symbol being used to denote a particle property and an overbar to denote the 
corresponding ion property. Greek subscripts will imply summation over both particles 
and ions, e.g. Z,q, = q + 4, and Latin subscripts will indicate a sum over the particles 
only. 
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A fundamental quantity for the PCS experiment is Ig(K, T ) ( ,  the modulus of the 
normalized temporal autocorrelation function of the scattered electromagnetic field 
(Oliver 1974); K is the scattering vector and T the correlation delay time. For T short 
enough so that 

K dt'u,(t')<< 1 I,' 
we have (cf Pusey 1975, equation (12)) 

where N is the number of particles, S ( K )  is the static structure factor, Ra(t) is the 
position of particle a at time t and ua,(t) is its velocity component in the x direction 
which we will take along K ;  note according to our notation convention the above sum is 
over the particle velocities (and positions) only. The angular brackets denote a full 
ensemble average, over particles, ions, and the solvent. In lowest order in c the particles 
can be considered as non-interacting and their individual motions can be considered as 
that of pure Brownian motion at infinite dilution. Then only the autocorrelation terms, 
i.e. the a = b terms, contribute to the above sum and we recover Pusey's (1975) result 
for the right-hand side of equation (2), -K2Do/S(K) ,  with Do the translational 
diffusion coefficient (this result is only strictly true if the integrand is essentially zero at 
t 3 r, which will be the case here (Harris 1975)). To be consistent S ( K )  should also be 
expanded in c, but we will carry this through intact in what follows (see 0 4). 

In determining the first correction to the infinite-dilution result we will need to 
consider a systematic expansion of the right-hand side of equation (2) which makes use 
of c as a parameter of smallness. A formalism for carrying out such an expansion for the 
ohmic conductivity of an electrolytic solution has been given by Friedman (1964a). 
Apart from constant prefactors, the quantity which he expands is, in our notation, 

lim 1' dt' e-"'(uax(0)usx(t')). 
f+oo a.0 0 

This cluster expansion provides for the elimination of divergencies which would 
normally occur due to the long-range nature of the forces between particles, ions, and 
particle-ion pairs by a resummation procedure similar to that used in the equilibrium 
theory of ionic solutions to avoid identical problems (Friedman 1962). Neither the 
presence of the additional exponential term in the ensemble average on the right-hand 
side of equation (2) nor the fact that the sum there is limited to just one of the charged 
species, the particles, alter the arguments which justify the use of the cluster expansion 
so that we may also use it here as the basis of our expansion. In applying this formalism 
we must specify certain solvent-averaged quantities: a propagator describing motion in 
the solvent at infinite dilution and the many-body solvent averaged pair forces between 
the particles and ions are the basic quantities. In the Brownon model (Friedman 1964b) 
these are taken to be the propagator for Brownian motion and the longest-range part of 
the Coulomb force, screened by the solvent, and the Stokes force. The structure of the 
solvent is therefore ignored, as is the case at infinite dilution, and it is characterized only 
by its dielectric constant, E, and viscosity, 7. We will employ this model here also. One 
final (minor) point of clarification is called for. In this model, as in other work where the 
motion of the ions has been considered, the motion of the ions as well as that of the 
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particles is given in lowest order as a Brownian motion. Since the bare ions here are not 
massive compared to the solvent molecules, this would appear at first sight to be 
blatantly incorrect. However, in solution the ions will be solvated so that the basic 
charge carrier will have a considerably larger mass than a solvent molecule, and its 
motion can be described as Brownian (with an appropriate radius, the Stokes radius, 
larger than the ion crystallographic value). 

3. Limiting law results 

3.1. Autocorrelation terms 

The autocorrelation contribution to the sum on the right-hand side of equation (2) is 
particularly simple to determine since the exponential term is identically unity for this 
case and we are left with the bare velocity autocorrelation function. In the Debye- 
Huckel approximation we have (Harris 1973) 

Here K D  is the Debye shielding parameter, 

K L  = 4'7E-l 1 C a q i ,  l a  = 6 m R a  
a 

is the friction coefficient for charge species a, with Ra its radius, and 0, 
KL(L-' + l i ' ) / p .  We have used the Laplace transform, zf(t) = j2 dt e-"(t) since the 
time dependence is most simply indicated this way. 

For the first term on the right-hand side of equation (3 ) ,  which is the infinite-dilution 
result, it is easily verified that for T of interest, say lO-'s S T S  s, the T limit in 
equation ( 2 )  can be replaced by infinity (Harris 1975).  For the second term this is not 
readily apparent since this decays much slower, as t-3'2 (Harris 1973) ;  however this also 
turns out to be the case. Note, this slow decay is quite distinct in origin from that 
resulting from the use of a frequency-dependent friction coefficient in the description of 
infinite-dilution Brownian motion. 

The contribution of the ions in the above result is through the sum, which includes 
both particles and ions as field particles, and through the Debye and wa parameters. 
However, when we take into account the inequalities q >> 4, R >> I?, together with the 
charge neutrality we find 

the shielding parameter with the ions neglected; the ion field term is also negligible. 
Since we can replace T in equation ( 2 )  by infinity, the limiting law autocorrelation 
contribution in that equation is given from the s + 0 limit of equation ( 3 ) ;  denoting this 
by a superscript (1/2) to indicate the c 1 l 2  dependence, and a subscript A we have 

2 2  
K D  == K = 49$Cq2/€, 
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The Debye-Huckel result can be improved by including the chain terms in the 
evaluation of the velocity autocorrelation function. This does not qualitative1 affect the 
above result, leading only to an additional numerical prefactor of (1 + 2-''$-' which 
gives what we may refer to as the Onsager approximation (Friedman 1964b). The above 
result very clearly shows that the ion contributions to the autocorrelation part of the 
limiting law term are negligible. 

3.2. Joint correlation terms 

In evaluating the joint correlation contribution to the right-hand side of equation (2) we 
will have to include the exponential term which appears in the ensemble average. In 
lowest order and in the Debye-Huckel approximation we have 

a # b  

x pa (k, is - Z)Ub (0) wa wbkzb( k) doa (0) dub (0). ( 5 )  

To clarify this equation we have retained as far as possible the notation of Friedman 
(1964b); ua(t)  is the velocity of particle a at time t, W, the normalized equilibrium 
velocity distribution function for u,(O), Pa(O, t )  the propagator for particle a to go from 
ua(0) to u,(t) in the interval (0, t )  at infinite dilution, and 

J J 

with Fab the solvent-averaged force on particle a due to particle b (we have mentioned 
above that it is the specification of Pa and Fab which defines the Brownon model). The 
Fourier-Laplace transform, indicated by a tilde, is used here: 

f ( k ,  ~ ) = ~ P d f e ~ ~ ' ~ d l e ' ~ ~ ~ ~ ( r ,  t ) .  

Finally, U, is the unit vector along K, already taken to lie in the x direction. The 
remaining term, 

hzb(Ra - R b )  = hab(lRa-RbI) exp[iK (Rb-Ra)] 
is the product of the lowest-order part of the equilibrium configuration correlation 
function, habr and the exponential term so that 

izb(k) = J d R  eXp[ik (R,  -&)I eXp[il(. (&-Ro)]hab(R) 

with R=Ra-Rb=Ra(0)-Rb(O). 
The Coulombic and Stokes components of Fab each contribute separately to (9, 

however as they both lead to similar results we will only consider the first in detail here. 
Note first that all the integrals except that over k can be carried out exactly as by 
Friedman (1964b), and that it is this remaining integration which determines the 
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concentration dependence. Calling this integral I&), we have 

which for K = 0 is identical to Friedman’s equation (4.12). Introducing spherical 
coordinates, this becomes 

Zc(s) = I de  cos20 lo d+ sin3+ Io dk 

We have been unable to evaluate this integral analytically, however it is possible to 
expand the integral by making use of the inequality of the means, K 2  + k 2  a 2Kk, and 
integrate term by term. For our present purposes this will suffice (equation (7) is also 
based on a similar expansion). Carrying out this procedure after taking the s + 0 limit 
which is again appropriate, we have 

k 2  
[k2(2/pl)+s](~* + K 2 +  k 2  -2Kk sin+ me) 

2v 7r m 

0 

(8) 

The presence of the ( K ~ + K ’ ) - ~ ’ ~  term indicates that the Coulombic joint correlation 
term will not contribute to the limiting law for values of K of practical interest, e.g. in 
the experimental studies of Brown et a1 we find data reported over the range 
0.6 6 K x 6 3.3 and K estimated at about 3 X lo4 (all in cm-’) for which case the 
Coulombic joint correlation term is negligible compared to the autocorrelation term. 
We also find K == K from the expression for K preceding equation (4). 

The calculation of the Stokes component can be carried out in a similar manner, 
again resulting in a (K’ + K2)-’” dependence so that the entire joint correlation term 
will not contribute to the limiting law. In the next section we will see this combination of 
K and K occurs also when we consider the concentration dependence of S(K) .  

3.3 Conclusion 

We have seen that only autocorrelation terms contribute to the limiting law for 
dlg(K, ~)l/d?. These terms are due solely to the Coulombic interaction between the 
particles, the contribution from the hydrodynamic interaction being identically zero. 
Thus we see that as the particle concentration increases from infinite dilution to the 
limiting law regime we must only consider the electrostatic interaction; this verifies an 
implicit assumption of Pusey’s (1975) based on the strong structure evident in the 
experimental results (Brown et a1 1975). 

4. Discussion 

4.1. Particle-particle interactions 

In obtaining the above results we have used the Debye-Huckel (DH) value for the 
equilibrium configuration correlation function hob appropriate to our model of point 
charges; this is implicit in the second term of equation (3) and explicit in equations 
(6)-(9). As noted by Brown et a1 (1975, 6 5.1) the conditions of their experiment are 
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such that the mean particle separation c - ~ ’ ~  is comparable to the separation length L at 
which the particle-particle interaction energy is equal in magnitude to the thermal 
energy kT. We would not expect the DH approximation for hab to be particularly good 
under such conditions; however, it is known that volume integrals of habr e.g. for 
determining thermodynamic properties, are often quite accurate under conditions 
where hab itself is not. Our results would be best at more dilute concentrations for which 
c >> L. At significantly lower concentrations than those reported counter-ions due 
to the intrinsic ionization of the solvent would have to be included and our results would 
not apply without modification. This would not qualitatively alter our results however. 

It is possible to modify our results to better accomodate the experimental conditions 
by using the potential 

-1/3 

ER 2*2 
U(r) = - exp[ - K ( r  -2R)] 

r 

(Brown et a1 1975, 9 5.1) for two particles separated by r to determine hob. A similar 
potential has been used by Phillies (1974) for just this purpose (note, we only require 
the particle-particle correlation function in our calculations). Since this only differs by a 
constant prefactor from the DH potential 

UDH(r) = ( q 2 / E r )  e-rr (1 1) 

we can see immediately how this would modify our previous results. The joint 
correlation terms can still be ignored and in place of equation (4) we have 

with 1,4 the surface potential. 
The theory which supports U(r) does not seem well enough developed at present to 

make it worthwhile to pursue this point here any further, and our opinion is that our 
present results, in the form of equation (4), are most useful at low dilution for which the 
point charge model in the DH approximation is a reasonable description. In future work 
we will consider alternative choices of hab, in the context of the charged sphere model 
which is most applicable here, based on recent results in the equilibrium statistical 
mechanical theory for such systems. 

4.2.  Final comments 
Several interesting points which have emerged from this study bear comment on. First, 
our main result, equation (4), is similar to that found for uncharged systems (Alten- 
berger and Deutch 1973) with Do being replaced by a concentration Dee (in that case 
the correction goes as c ) .  It is interesting to note that DeR < Do in our result while in the 
case of uncharged particles Des > Do was found. While the latter equality may result 
from a more complete theory, it can be shown that including the next-order terms in the 
hydrodynamic interaction in the present theory leads to the former inequality. It is 
beyond the scope of the present paper to discuss uncharged systems, however it is 
important to re-emphasize a very basic difference between these and the charged 
systems studied here. As was pointed out in 0 3.3, only electrostatic interactions 
contribute to the lowest-order concentration corrections here, and therefore a more 
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complete treatment of the hydrodynamic interaction, including back-flow effects, is not 
required. 

We also see from equation (4) that no new K dependence enters in going from Do to 
Detl. The possibility of such dependence entering our results when the consistent form 
of S(K) is used can be readily dismissed; we have 

S ( K )  = 1 + c- dRh(R)R sinKR F la 
= 1 - c  4.rrq2p +higher order in c 

€ ( K 2  + K 2 )  

so that for the limiting law S ( K )  = 1 holds. For the experiments of Brown eta1 (1975) a 
similar result would follow using h as determined by the potential given in equation 
(10). The same conclusion, S ( K )  = 1, is not immediately obvious for this case, however, 
because of the large value of the surface potential term, and some contribution to their 
results from S ( K )  might be expected. 
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